Home  Contact us 
The Ubiquitous zAxis
15^{th} July 2015 We define a unit point U, (1,1), whose projections on OX and OY, represent the unit measurements in continuum and space respectively. We keep in mind that OX and OY do not represent the axes in Euclidean space. The objective is to define an arbitrary point P in terms of U in XY plane as shown. Figure1: The definition of unitpoint U in jspace.
We can account for the entropy inherent in the jspace by not allowing the observer to make measurements up to infinity on either OX or OY axes. We connect the points on OX and OY axes where Obs_{M} resources are ineffective due to entropy and no further information can be measured. Had there been no entropy, the observer would have continued up to infinity and the result would have been a PE1 measurement. Thus triangle OXY as shown in Figure2 represents a PE<1 measurement space. We are interested in developing a physical description within ΔOXY. For Obs_{M} it will represent PE1_{j} space. Figure2: The description of the measurement space for Obs_{M}.
The unitpoint U is now assigned a value (1,1,1). Therefore the origin O in XY space is replaced by the unit point U. The vertex represented by O is now taken as one of the vertices of the ΔOXY. Note that the progress along OX and OY is limited by XY representing observer's upper limit and as a consequence the measured infinite for Obs_{M} is projected on to O. Thus UO represents the traditional zaxis used to describe the physical measurements of a twostate system. The vertices X, Y and O are represented by (100), (010), and (001) respectively. Figure3: AnharmonicCoordinate representation of the measurement space with respect to unit point U. The lines UX, UY, and UZ can be extended to meet OY, OX, and XY at points A, B and C. A geometrical net can be constructed by connecting B and C and extending it until it meets OY, connecting A and B until it meets XY, and connecting A and C until it meets OX. A geometrical net from the elementary triangle ΔOXY originating from the unitpoint U can be developed. The nodes O, X, Y, and U are known as "cardinal points" of the net. The points lying on the net are called "rational points". The points lying outside the net, such as P, are called "irrational points". The objective as explained earlier is to construct or express an arbitrary point P in terms of the cardinal points. Figure4: Directional properties of the net associated with the unit point U.
Given vectors UX, UY, and UO ( α, β, γ ), it is possible to find scalars l, m, n such that (Figure3), if OB/BX = m/n; XC/CY = l/m; YA/AO = n/l, and OB/BX × XC/CY × YA/AO = 1, then lα + mβ + nγ = 0. The values of the scalars l, m, and n must be non zero. Further they must be either integers or rational numbers. The ΔOXY with OUC, XUA, and YUB can be considered the primary net of point U (1, 1, 1). It has the following properties: (i) if l + m+ n = 0 then the net drops to a line, (ii) if either of l, m, n is zero the net collapses to point U,(iii) The line [l, m, n] = [1, 1, 1] is called the unit line for an arbitrary point (α, β, γ). For unit point (1, 1, 1) the unit line [1, 1, 1] is denoted by Λ. The relationship between a unit line corresponding to the unit point, is that of a polar and its pole, such that the condition α + β + γ = 0, is satisfied. We will discuss the description of an arbitrary point in ΔOXY next. We should note that the construction being described here is analogous to the definition of "constructibility" from a unit length using compass and straightedge in field theory. Similar constraints of extensions of a field being rational numbers, are used to form the group of extensions which eventually lead to Galois theory to find solutions of higher order polynomials. The irrational numbers are not part of such groups as they are not constructible. In jspace we are forming similar structures in twostate system by constructing geometric nets around unitpoint U, with projections of U on OX and OY axes as unit lengths. For details on Geometric Nets and Anharmonic Coordinates, please refer to the works by Hamilton and Hime. Information on www.ijspace.org is licensed under a Creative Commons Attribution 4.0 International License.

Previous Blogs: Majorana ZFC Axioms Set Theory Nutshell2014 Knots in jspace Supercolliders Force Riemann Hypothesis Andromeda Nebula Infinite Fulcrum Cauchy and Gaussian Distributions Discrete Space, bfield and lower mass bound Incompleteness II The supersymmetry The cat in box The initial state and symmetries Incompleteness I Discrete measurement space The frog in well 