Home 
Contact us 
Infinite Fulcrum 18^{th} May 2014
In
classical mechanics a lever works on the principle of balance of torque
where the applied forces and their distances from the fulcrum provides
the relationship maintaining the equilibrium.
The measured mass may be for a single entity or a composite structure which itself may be represented as ∞'_{j} in jspace where ∞'_{j} << ∞_{j}. The structures close to origin will contain lot more information than those away from the origin. Therefore these structures will be measured to be bound by much stronger force than those at large distance from the origin. We can think of the situation in terms of handshakes. More information available firmer the handshake and consequently more energy is required to make a measurement. Some of the applications of the infinite fulcrum in fundamental structures are discussed below. We need to keep in mind that M, M_{A}, and M_{B} are the measured structures. The events corresponding to q = 1 value are virtually impossible to recreate, though under controlled environment, a temporary shift of the reference observer of observer pair in jspace towards origin <∞_{j}> in jspace, can be accomplished. This will result in measurements of structures closer to q = 2 state, with more information content and very short lifetime by the macroscopic observer Obs_{M} before the equilibrium is restored. Larger the shift generated, larger will be the measured values such as the rest mass of these short life time structures.
Information on
www.ijspace.org is licensed under a Creative Commons
Attribution 4.0 International License.

Previous Blogs: Cauchy and Gaussian Distributions Discrete Space, bfield and lower mass bound Incompleteness II The supersymmetry The cat in box The initial state and symmetries Incompleteness I Discrete measurement space The frog in well 