Logo ijspace
                  blog



 




Space Time and Entropy

25th March 2019

HOME

























"Lightning has struck the rails on our railway embankment at two places A and B far distant from each other.  I make the additional assertion that these two lightning flashes occurred simultaneously.  If I ask you whether there is sense in this statement, you will answer my question with a decided “Yes.”  But if I now approach you with the request to explain to me the sense of the statement more precisely, you find after some consideration that the answer to this question is not so easy as it appears at first sight."

- Albert Einstein, On the idea of time in Physics, Relativity, The special and general theory.





















"Expression and shape mean almost more to me than knowledge itself."

-Hermann Weyl


















 



"Despite all the ink that has been spilled and all the noise generated by discussions about the nature of time, I would argue that it’s been discussed too little, rather than too much. But people seem to be catching on. The intertwined subjects of time, entropy, information, and complexity bring together an astonishing variety of intellectual disciplines: physics, mathematics, biology, psychology, computer science, the arts. It’s about time that we took time seriously, and faced its challenges head-on."

 - Sean Carroll, From Eternity To Here: The Quest for the Ultimate Theory of Time.



















"You could ask the so called fine-structure constant, that's a dimensionless constant which has to do with the probability that if a electric charge  accelerates then it radiates a photon. That's a dimensionless number. You could ask whether that's the same everywhere, and you could ask whether it depends on time? Now as far as we know it does not depend on time in our bubble. There's no evidence whatever that it depends on time in our bubble. In this kind of picture it would make sudden jumps every time the bubble changed, it would make sudden jumps and we have no evidence against that. We have no evidence against sudden jumps of it. We do have evidence against gradual changes, over long long periods of time in our bubble in our world. So, we have never seen experienced any evidence, for a time dependence of what we normally call the constants of nature, at least at the moment."

- Leonard Susskind, Why is Time a One-Way Street?, Santa Fe Institute, 2013.


   

    Imagine that a colony of amoebae is commuting between Ottawa and Montreal, in a self-driving car named Bubble, which has no windows, no brakes, no accelerator, no steering-wheel and a fuel tank with an unlimited capacity.  Furthermore in Bubble there is no odometer, no clock, nor any GPS, to indicate the exact location or time in a conventional sense.  Only information available to the passengers or observers, is an instrument similar to the fuel-gauge, called action-gauge, which tells amoebae how efficiently the fuel or the resources have been consumed during their journey.  The catch is that the observers have to design the action-gauge themselves.

    Now let us assume that among the observers is an enlightened amoeba named Aku, who is aware of its own mortality.  With help from his fellow observers 133Cs and  HeNe, Aku is been able to develop a system, not necessarily the precise action-gauge, to get some sense of  the commute he is stuck in making.

   If we think about it, Aku has not been given any information about Bubble whatsoever except for what Aku can measure.  Aku is not aware of the increasing entropy S, resulting in increasing resource consumption for the same destination, due to the lack of precision in measurements.  An assumption can be made that entropy S does not affect a sub-system inside the vehicle, and the conditions such as Inertial Frames, Unitarity and Locality etc. can be used to describe the results measured by Aku inside Bubble.  The important thing to note, is that the observers have no awareness of "outside" Bubble.  The  states: "inside" and "outside", are Aku's perceptions localized within Bubble.

   As it happens, the amoebae traveling to greater distances begin to notice something very odd going on.  The precision observers 133Cs and HeNe both tell Aku, that per their measurements, it is becoming increasingly difficult to commute, as if Ottawa and Montreal are growing distant from each other.  When different observers commuting at different locations compare notes they are forced to agree that various cities, towns, and villages are growing apart in similar manner, because the fundamental standards of measurements which are assumed to be absolute, are telling observers as such. 1

    An inevitable conclusion based on the measurements with continuously deteriorating precision, can be drawn that the blue marble is expanding like a gas balloon, which actually is a thermodynamic picture.2  But as outside observers we know that it is not true.  In particular the constant which is directly linked to the action-gauge itself, h^, and the constant which expresses the limitation of the Bubble due to inherent entropy, c^,  both are bound to show the effect of entropy if they are measured precisely enough.  (Another constant Aku has to worry about is G^, which keeps Bubble on an affine path, unless some measurable quantity based on h^ and c^, can be maneuvered locally inside the bubble.)

    This required precision is impossible as the observers 133Cs and HeNe themselves are (i) inside the bubble and (ii) the best they can do is to approximate the actual action-gauge, but never precise enough.3  They are affected by the same entropy as Bubble.  So all observers are in the same boat essentially, with no outside observer ( ||r  to Obsi) to validate their measurements.

     Every measurement Aku can make, will have to derive from the readings the action-gauge is providing.  It is equivalent to saying that the actual action-gauge providing the precise state of the available resources, is the topological space, Bubble is the manifold and the measurements made by the Aku, 133Cs, and HeNe are made using a measurement metric based on the action-gauge of their design, in this manifold.  This implies that the space (HeNe) and the time (133Cs), both are linked to the action-gauge, and hence they can not be measured independent of each other.4

    We can take the argument further, and assume that there are different types of amoebae and each of them riding their Bubbles of similar nature, albeit with similar inefficient action-gauges.  This situation is like different observers using different manifolds and measurement metrics, while the underlying topological space remains unchanged.  These observers can be anything or anyone, from an atom to an amoeba, each with their own unique characteristics and hence unique action-gauges.  The bottom line remains that for each observer, the action-gauge and hence the underlying topology, does not change and the second law of thermodynamics, Δ 0,  is always applicable.  Each Bubble will be affected by the same entropy, resulting in continuously increasing resource consumption during the same quantum of journey.
 

    Inside Bubble, Aku must complete a circuit before it can start counting.  The sequence of events to accomplish this, is as follows:

(i)    Assume a VT-Symmetry, i.e. define the origin based on precision measurements of  133Cs and HeNe.

(ii)   Complete a circuit based on VT-Symmetry.  The circuit will be the curve of least energy or the curve of least disorder for Aku.

(iii)  Apply Stokes' theorem and Gauss' theorem to form the Surface of Least Disorder (SLD).

(iv)  Aku can start counting using SLD inside Bubble.  We note that Aku is merely counting, not measuring either length or time.

    So how does the concept of time comes in to the picture inside Bubble?  Let us assume the simplest case that the circuit to be completed inside Bubble, is a circle.  And the observers measuring the circle are: Aku, 133Cs & HeNe inside Bubble, and an observer Obsfrom outside Bubble.  For Aku, it is virtually impossible to complete the required measurements before the inevitable binary fission takes place.  In fact it may well be an impossible task, for next few thousand generations of Aku to complete the measurements.  On the other hand, for an outside observer it is a single measurement to determine the completed circuit as a circle.  The situation is as shown below:

Aku Circle


    Therefore in essence, the infinite time axis for Aku is nothing more than an instant for Obsi.  The entropy affecting Aku's measurements, has no implication for Obsi measurements.  Thus time is a relative concept which has significance only to the observer making measurements.  Inside Bubble for Aku's measurements, time is absolute as Aku can not shake off the entropy inherent in its measurements.  All the resources inside Bubble must therefore be calibrated against time-axis. 

    Aku is in j-space, which is a dynamic measurement space, hence Aku must write his/her Lagrangian and minimize the action.5  It is not that difficult to imagine that inside Bubble there are billions and billions of  amoebae and all of them are part of the same commute as Aku.  Hence the time axis determined by Aku's measurements, will remain the same for all of them.  We will continue to discuss Aku the amoeba, in forthcoming blogs.  The concept of time and its correlation to the entropy ingrained in j-space measurements of an observer, has profound effect on how we should formulate problems in higher information space.  An example is shown below:6

String Theory jpg

We will discuss this example later on, with respect to measurements in j-space.  Also now that we are able to count, we should figure out how to build our LEGO blocks.

___________________

1. The term "comparing notes by Akus" here, requires adhering to Lorentz Invariance and Möbius Transformations.  Similarly fuel signifies the resource utilization in j-space of Akus.  In essence we are discussing impossible-problem-1, which is the resource optimization in a closed system represented by Bubble.

2. A thermodynamic description implies that the internal mechanism and symmetries of the System, for e.g. spin, can not be precisely determined.  This is how Aku approximates the interior of Bubble.  The interior of the System and the interior of the Bubble are two different descriptions.  Bubble must follow the topology which is set by the System.  Bubble is at the far edge of the System, yet the interior of Bubble is all Aku has for measurements.  Entropy represents the internal state of Bubble, thus the value of entropy would remain the same for any reference frame Aku is in, inertial or non-inertial.  The values of dW, dQ, and T would change inside Bubble for relativistic coordinate frames.

3. Planck domain measurements are not possible.

4. Invariance of space-time interval in General Theory of Relativity.  Entropy ensures that the information gathered during each successive space-time interval will be continuously diminishing.

5. Aku would have to assume action to be time independent inside Bubble.  We will discuss the criterion behind this important assumption.

6. With grateful thanks from the notes of Dr. S. of Nikhef.

||r ≡  Similar

***

AbombTDilation



Previous Blogs:


Nutshell-2018

Curve of Least Disorder

Möbius & Lorentz Transformation - II

Möbius & Lorentz Transformation - I

Knots, DNA & Enzymes

Quantum Comp - III

Nutshell-2017

Quantum Comp - II

Quantum Comp - I

Insincere Symm - II

Insincere Symm - I

Existence in 3-D

Infinite Source

Nutshell-2016

Quanta-II

Quanta-I

EPR Paradox-II
EPR Paradox-I 

De Broglie Equation

Duality in j-space

A Paradox

The Observers
Nutshell-2015
 
Chiral Symmetry

Sigma-z and I

Spin Matrices

Rationale behind Irrational Numbers

The Ubiquitous z-Axis

Majorana

ZFC Axioms

Set Theory

Nutshell-2014

Knots in j-Space

Supercolliders

Force

Riemann Hypothesis

Andromeda Nebula

Infinite Fulcrum

Cauchy and Gaussian Distributions

Discrete Space, b-Field & Lower Mass Bound

Incompleteness II

The Supersymmetry

The Cat in Box

The Initial State and Symmetries

Incompleteness I

Discrete Measurement Space

The Frog in Well

Visual Complex Analysis

The Einstein Theory of Relativity


***
 


Information on www.ijspace.org is licensed under a Creative Commons Attribution 4.0 International License.
Attribution — You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. No additional restrictions — You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits. This is a human-readable summary of (and not a substitute for) the license.

Green
              power